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Over 400 secondary metabolites have been reported from members of the Pyrenomycetes and the Loculoascomy- 
cetes. Among these, members of the Hypocreaceae, the Clavicipitaceae, the Xylariaceae, the Melanosporaceae, and 
the Sordariaceae in the Pyrenomycetes, and those of the Pleosporaceae and the Sporormiaceae in the Loculoasco- 
mycetes have been explored frequently; and representative secondary metabolites produced by these fungi are 
illustrated. Many of them are reported to be phytotoxic and some of them have antibacterial or antifungal activities. 
Only recently were the compounds tested in screens targeted for specific enzyme inhibitors or receptor- 
agonists/antagonists. This group of fungi are attractive for screening for novel natural products because of the 
diversity of species and physiology. 
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The pharmaceutical industry is increasing interest in screen- 
ing fungi for secondary metabolites. Although interest is 
mounting, our knowledge of isolation methods, fungal 
physiology, and fungal diversity remains rather limited. 
The 69 000 fungal species currently recognized are esti- 
mated to be less than 5% of the total number (1.5 x 106) 
thought to exist [30]. Many groups of fungi, such as pow- 
dery mildews, some rusts and smuts, have eluded the efforts 
of fungal physiologists to cultivate them. Because of the 
time constraints imposed in the pharmaceutical industry, 
most investigators tend to concentrate on fast-growing 
fungi with similar physiological and biochemical require- 
ments. In order to explore the potential of the less studied 
and more diverse groups of Ascomycetes to produce sec- 
ondary metabolites, the Pyrenomycetes and Loculoascomy- 
cetes are reviewed in this article. The Ascomycetes consist 
mainly of the Plectomycetes, the Pyrenomycetes, the Locu- 
loascomycetes, and the Discomycetes. The Plectomycetes 
which produce globose ascomata and the Discomycetes 
which produce cup-shaped ascomata are excluded from this 
review. Plectomycetes with anamorphic states Aspergillus 
and Pencillium have been reviewed extensively elsewhere. 
The grouping of genera into families is based on the 
schemes of MOiler and von Arx and von Arx and Mtiller 
[9,46]. 

Excellent studies have been carried out on individual 
Pyrenomycetes and Loculomycetes. For example, Nair's 
group published a series of papers on metabolites of the 
Pyrenomycetes [48,49], while Turner's group worked on 
fungal metabolites including those of the Pyrenomycetes 
[2,24]. The Xylariaceae have been explored by Edwards 
and Whalley's groups with regard to secondary metabolite 
production [20,2-1,87]; Gloer and colleagues reported a ser- 

Correspondence: LH Huang, Department of Medicinal Chemistry and 

ies of novel compounds from coprophilous Ascomycetes 
including coniochaetones A and B from Coniochaeta sac- 
cardoi and terezines A-D from Sporormiella teretispora 
[78,80]. More recently, the squalene synthase inhibitors 
known as zaragozic acids (squalestatins) were found to be 
produced by members of the Pleosporaceae and their ana- 
morphic states [10]. In contrast to the focus on fast growing 
organisms in many research programs, these researchers 
focused on certain types of slower-glowing, mid- to late- 
successional species. 

Habitats 

The two groups of fungi considered in this review live in 
various modes on many different substrates. Many of the 
Pyrenomycetes are saprophytes found in a variety of sub- 
strates such as soil, dung, wood, and decaying leaves or 
petioles. Some thrive in unusual environments, for 
example, on wood submerged in marine water. Many pyr- 
enomycetes are parasitic to a wide range of organisms, 
including the marine red algae, lichens, other fungi, insects, 
and higher plants. Loculoascomycetes exist as superficial 
epiphytes, parasites, or hyperparasites of superficial fungi 
and insects, as internal parasites fruiting on green leaves 
and stems, lichens, mosses, as parasites fruiting on dead 
leaves, stems, or as saprophytes on dead leaves, herbaceous 
stems, wood, dung, and plant debris. In addition, they occur 
in the marine environments on such surfaces as submerged 
wood, sand, and algae. 

Since stromata of the Xylariaceae are fairly large and are 
easily isolated, most investigators tend to work in this 
group of fungi in terms of secondary metabolites. Similarly, 
members of the Hypocreaceae and the Clavacipitaceae also 
produce more conspicuous stromata. Thus, the Xylariaceae 
produced the major compounds such as dihydroisocoumar- 
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have been reported to be produced by the following marine 
fungi: auranticins A and B by Preussia aurantiaca; obionin 
A by Leptosphaeria obiones; leptosphaerin, leptosphaero- 
dione, and leptosphaerolide by Leptosphaeria oraemaris; 
two lactides by Hypoxylon oceanicum, melinacidins III and 
IV and gancidin W by Corollospora pulchella and leptosins 
A-H by Leptosphaeria sp [43]. 

Members of the Pyrenomycetes and Loculoascomycetes 
can be obtained from culture collections such as American 
Type Culture Collection, Centraalbureau voor Schimmel- 
cultures, International Mycological Institute, and Institute 
for Fermentation (Osaka). Taxonomists who are active in 
studying them in culture include Drs RT Hanlin, S Huhn- 
doff, ES Luttrell, JD Rogers, AY Rossman, GJ Samuels, 
CH Shearer and EG Simmons. 

Distribution of secondary metabolites in different 
taxa 

Over 400 novel compounds have been discovered from 
fungi classified in the Pyrenomycetes and the Loculoasco- 
mycetes based on a survey of CA Selects: Novel Natural 
Products (published by the American Chemical Society) 
and the Dictionary of Natural Products (Chapman & Hall). 
The period covered in this review is from 1930 up to the 
present. The total number of the compounds produced 
would have been much larger if anamorphic states were 
taken into consideration. For example, members of the gen- 
era Fusarium, Trichoderma and Gliocladium, and the ana- 
morphic states of the Hypocreales produce many toxic or 
other bioactive secondary metabolites. 

Among the Pyrenomycetes, members of the Melanospor- 
aceae, the Xylariaceae, the Hypocreaceae, and the Clavicip- 
itaceae are the dominant producers of reported secondary 
metabolites, followed by members of the Sordariaceae and 
the Ophiostomataceae (Table 1). Among the Loculoasco- 
mycetes, members of the Pleosporaceae and the Sporormia- 
ceae produce more secondary metabolites than those of the 
other families (Table 2). The genera whose members pro- 
duce 17 or more secondary metabolites include Gibberella, 
Claviceps, Chaetomium, Ceratocystis, Hypoxylon, 
Epichloe, and Neurospora. Notable among them are Gib- 
berella fujikuroi, which produces 65 gibberellins [26], and 
Claviceps purpurea and C. paspali, which elaborate 40 
ergot alkaloids [71]. These have been reviewed in the refer- 
ences cited [26,71] and elsewhere and consequently are not 
included in this article. 

The genera with more than two species that have been 
reported to produce secondary metabolites are listed in 
Table 3. All of the other genera not listed in Table 3 have 
either one or two species that are known to produce second- 
ary metabolites. In terms of different types of secondary 
metabolites, the most productive genera in a decreasing 
order are Chaetomium, Ceratocystis, Claviceps, Hypoxylon, 
Nectria, and Preussia. 

Fermentation 

Unlike bacteria, most fungi are acidiophilic and grow on 
solid substrates in their natural habitats. They are generally 
aerobic and mesophilic with regard to oxygen and tempera- 
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403 Table l Numbers of secondary metabolites produced by Pyrenomycetes 

Family No. No. 
Genus produced produced 

by genus by family 

Amphisphaeriaceae 
Apiospora 2 

Clavicipitaceae 
Acrospermum 2 
Balansia 4 
Claviceps >55 
Cordyceps 5 
Epichloe 17 

Diaporthaceae 
Endothia 3 
Gnomonia 3 
Melanconis 2 

Diatrypaceae 
Eutypa 2 

Halosphaeriaceae 
Corollospora 3 

Hypocreaceae 
Calonectria 1 
Gibberella > 82 
Hypocrea 4 
Nectria 24 
Neocosmospora 9 

Hypomycetaceae 
Hypomyces 4 

Melanosporaceae 
Achaetomium 2 
Chaetomium 40 
Kernia 1 
Melanospora 1 
Microascus 1 
Petriella 2 
Thielavia 13 

Ophiostomataceae 
Ceratocystis 20 

Polystigmataceae 
Glomerella 5 

Sordariaceae 
Coniochaeta 3 
Gelasinospora 4 
Neurospora 17 
Podospora 4 
Sordaria 7 

Xylariaceae 
Biscogniauxia 2 
Bolinia 3 
Camarops 2 
Daldinia 6 
Engleromyces 1 
Hypoxylon 22 
Nummulariola 1 
Poronia 9 
Rosellinia 13 
Thamnomyces 2 
Xylaria 3 

2 

>83 

2 

3 

>120 

4 

60 

20 

5 

35 

64 

ture requirements. Fungal species and even strains of a sin- 
gle species vary considerably in their rate of  growth. The 
variation of growth rate is especially evident in species of 
the Pyrenomycetes and the Loculoascomycetes. The per- 
iods of fermentation employed in producing the compounds 
reviewed here ranged from 2 days to 8 weeks. Most fer- 
mentations leading to all 400 compounds were done with 
stationary surface culture as the method of choice since this 
method provides better productions than either liquid or 
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404 Table 2 Numbers of secondary metabolites produced by Loculoascomy- 
cetes 

Family No. No. 
Genus produced produced 

by genus by family 

B otryosphaeriaceae 5 
Botryosphaeria 1 
Guignardia 4 

Mycosphaerellaceae 3 
Mycosphaerella 3 

Patellariaceae 4 
Buellia 4 

Pleosporaceae 36 
Cochliobolus 7 
Herpotrichia l 
Leptosphaeria 18 
Ophiobolus 5 
Phaeosphaeria 3 
Pleospora 1 
Setosphaeria 1 

Pseudosphaeriaceae 8 
Leptosphaerulina 1 
Pyrenophora 7 

Sporormiaceae 24 
Preussia 11 
Sporormia 1 
Sporomiella 11 
Westerdykella 1 

Table 3 Number of species in a genus producing secondary metabolites 
and number of recognized species in a genus [29] 

Genus No. Recognised 
species species 
which 

produce 

Chaetomium 17 200 
Ceratocystis 14 > 80 
Claviceps 8 35 
Hypoxylon 8 120 
Nectria 8 200 
Preussia 6 10 
Gibberella 5 10 
Leptosphaeria 5 1 O0 
Cochliobolus 4 11 
Cordyceps 4 100 
Balansia 3 20 
Endothia 3 10 
Glomerella 3 4 
Hypocrea 3 1 O0 
Hypomyces 3 30 
Mycosphaerella 3 >500 

solid fermentation. Many fast-growing fungi are fermented 
in liquid shaken culture while some slow-growing fungi 
are fermented on solid substrate. The amount of oxygen 
influences growth rate; when liquid culture was used, an 
rpm of shaker flasks below 300 was often employed. The 
pH of the fermentation media prior to sterilization ranged 
from 5.5 to 7.0. The temperature used to ferment cultures 
ranged from 24 to 30~ In addition to aeration, pH and 
temperature, other s  
light, nutrient concentration, and age of the culture are also 

important, although these are seldom mentioned in the 
literature. 

Secondary metabolites and biological activities 

Representative secondary metabolites produced by these 
classes of organisms are listed in Table 4. The table is 
meant to be illustrative rather than comprehensive, and the 
compounds are listed in the alphabetical order of the pro- 
ducing organisms. The classification of secondary metab- 
olites is based on their proven or probable biosynthetic ori- 
gins. Some of them, for example entries 2, 8, and 19, are 
of mixed origin. 

Polyketide-derived secondary metabolites share the 
biggest proportion among the compounds in the Table. 
They range from the relatively simple tetraketide (eg, iso- 
epoxydon, entry 58) to undekaketide hypoxyxylerone 
(entry 39). Among the isoprene-derived compounds, the list 
includes the monoterpene isopulegol (entry 6) at one end 
and sesterterpene ophiobolin (entry 19) at the other. 
Although plants are better known sources of alkaloids, 
these two classes reviewed here produce unusually large 
number of alkaloids, including ergot alkaloids, cytochala- 
sins, and epipolythiodioxopiperazines (eg, gliotoxin). There 
are relatively few examples of nucleosides and polypep- 
tides reported to date. Bioactivity is described, when 
available, by using the term used in the original publication. 
For example, fungitoxic and antifungal activities might be 
considered the same, but both terms are retained according 
to the original papers. Most of the biological activities 
reported for these metabolites are either antifungal or anti- 
bacterial although some produce metabolites with anti- 
tumor, antiviral, or antiprotozoal activities. This may reflect 
the fact that these activities have been investigated most 
heavily since, besides the need for such agents, the assays 
were relatively straightforward and easy to carry out. There 
are also many compounds whose activity is described as 
phytotoxic. Here, again, phytotoxicity was often the only 
activity tested because the organism was initially isolated 
as a plant pathogen. 

Other assays targeting specific enzymes or receptors are 
of relatively recent occurrence, and there may not be suf- 
ficient data accumulated to determine the numbers of 
metabolites with these activities. Some secondary meta- 
bolites bind to receptors (a tachykinin antagonist, cyclospo- 
rin C; and D~-antagonist, obionin A) or inhibit enzymes 
(phospholipase A2 inhibitor, thielocin AI/3; prostaglandin 
biosynthesis inhibitor, thielavin B; HIV protease inhibitor, 
cytochalasin analog L-696 474). 

The antifungal activity of certain secondary metabolites 
is often cited as a possible ecological advantage for the 
producing organism over other fungi. However, the potency 
of the compound once purified does not appear to be high 
enough in many cases to result in a competitive edge. The 
actual concentration and synergy within the natural habitat 
needs to be examined to establish the ecological signifi- 
cance of such a compound [83]. 

Several hydroquinone and quinone derivatives have anti- 
bacterial activity (see entries 5, 34, 47, and 48). The com- 
pgu_nd in entry 47, for example~inhibited Staphylococcus 
aureus at 1/zg ml -t. Although their biosynthetic origins 
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Table 4 Structures of the secondary metabolites produced by Pyrenomycetes and Loculoascomycetes 

Species Name Structure Chemical class Bioactivity Notes Ref 

1. AcrospermumAV-toxinC ,.....'~..,i N~-,..,...~ N H 2 amino acid phytotoxic AV-toxins D [37] 
viticola [~ I Z  Z '~  & andEalso 

v "O" v " O  isolated 

OH ~ OH O ~ "  cH3 antifungal [4] 

o .  

CH a 

OH na A-2 and B [63] 

H ~ ~ O H  OH also isolated 

CI_ 2 ; O  Cl na [68] 

0 H,,..,,.,,~,~ 0 . ~  0 C H 3 ]'~ :'[ 
CH 3 CI 

O antibiotic [77] 
V ~  OcHa 

0 

C H 3 ~ ,  QH na [39] 

CH3I~A~ OH3 na [73] 

~ 

OH O 

"- O cytochalasin Many species [75] 
" " activity of this genus 

produce this 
compound 

O OHIO. ~ 0)4 antibacterial [72] 

~ . 

405 

2. Apioapora 
montagei 

Apiosporamide 

3. Balansia A-1 
epichloe 

4. Buellia 
callescens 

5. Camarops 
microspora 

6. Ceratocystis {sopulegol 
coerulescens 

7. Ceratocystis 
fimbriata 

8. Chaetomium chaetoglobosin A 
mollipilium 

9. Chaetomium moIlicellin 
mollicellum 

amino acid 

polyketide 

monoterpine 

polyketide 

cytochalasin 

polyketide 
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406 Table 4 Continued 

Species Name Structure Chemical class Bioactivity Notes Ref 

10. Chaetomium chetracin A GH2OH. diketopiperazine antibacterial B and C also [67] 
O ' / nigricolor ~ N and cytotoxic isolated 

[~NH:~N~ 0 

[~ NH~ N S4"~O 
CH2OH 

11. Chaetomium oosporein O O polyketide phytotoxic [18] 
trilaterale O H ~  OH 

cH~ 31" "%'.31" "cH~ 
O O 

12. Chaetomium f O ~  na [14] 

5 - 4 "  coarctatum 

OH 

o 13. Chaetomium heptelidic acid O~ "~ sesquiterpene antibiotic and [32] 
globosum ~ C  cytotoxic 

O2H 

14. Chaetomium chaetochromin OH OH O polyketide [69] 
thielavioideum ,,. ~ ~ .CH a 

-Z oLc.  
- - , (  q f  -cH~ 

OH OH 0 
15. Chaetomium spdifferanisole C02H 

Cl 
OOH a 

polyketide cell [57] 
differentiation 

16. Chaetomium cochliodinol ~,~ shikimic acid na [70] 
elatum ~ _  NH O ~'/ - -  pathway 
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Species Name Structure Chemical class Bioactivity Notes Ref 

17. Chaetomium chaetocin .CI"IzOH diketopiperazine antibacterial [28] 
minutum O ~ ] k , ,  N /  and cytotoxic 

~,S-s'? NH~ N..~ 
o 

(3H2OH 

18. Cochliobolus cochlioquinone A OAc / - - -  sesquiterpene na B also [ 1 5] 
miyabeanus O ~  ', mixed isolated 

OH 

~ 

19. heterostrophusC~176176 ~ H  ..H sesterterpene phytotoxic [55] 

20. Cochliobolus lunatoic acid A O.~ .~ ~ ~ CO2H polyketide antifungal Induces [44,56] 
lunata ~ chlamydospore 

�9 ~ O formation 

O 

21. Cochliobolus spiciferone A O phytotoxic [53] 

spicifer ~0 
22. Coniochaeta coniochaetone A I u . O H  O O antifungal Coniochaetone [78] 

saccardoi H ~!~ ~ ~ 3 ~ . ~  % I ' ~  B also 
isolated 

C 

23. Cordyceps cordycepin Nl-t2 nucleoside adenosine [42] 
militaris N[I~'~" N\) mimic 

ON 

407 
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Table 4 Continued 

Species Name Structure Chemical class Bioactivity Notes Ref 

OH OH polyketide [5] 

OH OH 

24. Daldinia 
concentrica 

25. Endothia skyrin I . I O H  O OH poIyketide E. gyrosa and [13] 
longirostris / k r  E. fluens also 

produce 
skyrin 

O CH a 

O H ~  cH3 

OH 0 OH 

26. Endothia diaporthin OH O polyketide na [27] 

parasitica ~ i  i H 
OCH~" v v ~. 

OH 3 ~ typhina27" Epichloe chokol E OH:~ ~ ~ ~'~"" ~ / ~ , O H  sesquitevpene fungitoxic alsoCh~176 G [40,91] 

CH3 . ~  0"~ ~ C H  a 
H OH 3 

28. Epichloe gamahonolide A l i O  fatty acid antifungal Gamahonolide [41] 
typhina ~ 1 , , ~  ~, ,  B also 

isolated 

29. Eut~pa lata 

30. Gelasinmpora multiforisin A 
multiforis 

31. Gnomonia erythrostominoe 
erythrostoma 

~  / 
OH O OH 

CH 3 

0 OH OH 

O OH 

polyketide 

immuno- 
suppressive 

na 

Unusual [64,65] 
allenic 
epoxide 

Multiforisins [22] 
B-E also 
isoiated 

Deoxyerythro- [ 19] 
stominone and 
deoxyerythro- 
stominol also 
isolated 
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32. Guignardia O polyketide phytotoxic [60] 
laricina ~ OCH 3 

OC2H~H 0 

/ 

33. Hypocrea avellaneol ] polyketide antibiotic [6,50] 
avellanea ~ OH 

O ~ H  O CHa 

34. Hypocrea auroctrin OH O polyketide antibiotic [48] 
citrina 

OH 

35. Hypocrea hypelcin A peptide antibacterial [23] 
peltata and antitumor 

36. Hypoxylon mellein ,(~ ~-~ " ~  polyketide na [7] 
fragiforme 

OH O 

37. Hypoxylon L-69474 CH2OH cytochalasin HIV protease [58] 
fragiforme ~ H " ' / .  ,I:. inhibitor 

O 

38. Hypoxylon mammatum . . ~ N  O diterpine na [11] 
fragiforme SO3. 

39. Hypoxylon hypoxyxylerone OH r OH polyketide na [21] 
,fi'ag(fbrme O H ~  0 , , ~  [I [ 

OH 0 CH20H 
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Species Name Structure Chemical class Bioactivity Notes Ref 

40. Kernia sp FR90043 NHz nucleoside antifungal [33] 

COoHI 

O NH 2 

41. Leptosphaeria leptosin A CH2OH diketopiperazine antitumor B-J also [74] 
O ~  IN I" isolated sp 
H 

A N H .  N . ",,k~ O 

: ..OH 

O~.~4 N~ 

42. Leptosphaeria obionin A OH O polyketide D1 inhibitor [62] 
obiones 0 0 

~ ~ [ ~ O C H 3  

43. Melanconis flavovirin ~ ~ .~ ~ ? , . ~  CO2H fatty acid antifungal Myriocin is [66] 
flavoviriens ( ." V V " r  " , 4~  " , ~  also produced (-N,2 

OH 
O 

O O 

OH OCH 3 0 polyketide 

oct, o 

o 

O OCH3OH 

C H 3 ~ ~ ~ , -  CHa polyketide 

O OH 

44. Microascus cathestatin A amino acid protease B and C also [92] 
longirostris inhibitor isolated 

45. Mycoaphaer- asteromine [8] 
ella astroma 

phytotoxic, 
antifungal, 
antibacterial 

46. Nectria nectriachrysone na [61] 
haematococca 
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Species Name Structure Chemical class Bioactivity Notes Ref 

47. Nectria coryli OC1-t3 polyketide antibacterial Quinone and [47] 
C H 3 ~  OCH 3 hydroquinone 

also isolated 

OCH'~" "OH 3 
OCH 3 

411 

48. Nectria lucida O OH terpene antibacterial [17] 

CH 3 U "OH 

49. Nectria sp Cyclosporin C peptide tachykinin [31] 
antagonist 

50. Nectria cephalochromin OH polyketide antibiotic [16] 

viridescens OH[J ~ 

OH 

OH O 

' ~ ~ C H ~  

~ CH 3 

OH O 

51. Neocosmo- 'C9 acid' OH O amino acid Also produces [52] 
cyclosporin spora vasir~fecta OH A 

OH 3 NH 2 

52. Neocosmo- neovasinin OH polyketide phytotoxic Neovasinone [51] 
spora vasin[ecta C H a r ~ " ~  O also isolated 

I H 

. . . . . .  :OH 3 CH 3 

53. Neurospora deferri-coprogen ?H H O amino acid sideropbore ferricrocin [88] 
also isolated crassa O==~ N NH ?H 

/ )  NH/~,~,,.,./N,~ 
~ ' k  0 II H II -I 

k...-"~ L/ 0 OH 0 

54. Petriella WF-3161 y amino acid antitumor [76] 

H J  guttulata 0 ~ N 

0 
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Species Name Structure Chemical class Bioactivity Notes Ref 

55. Phaeospharia rousselianone A OH OH polyketide antifungal [89] rousseliana 0 0 OOH~ ~ 

56. Podospora appenolide A ~ I " ~ , / ~ j ~ ,  _\ antifungal Appenolides [79] appendiculata ~ ~ O B and C also 
isolated 

O 

57. Podospora podosporin O,, _ | Sesquiterpene antifungal and [82] decipiens ~ mixed antibacterial 

'OH 

OH 

58. Poronia isoepoxydon O polyketide 'antifungal' [25] punctata H @  
O " O  

O 

59. Poronia punctaporonin A OH.t . H / ~  sesquiteIpene na B-G also [20] punctata ~ isolated 
"Oh 

60. Preussia preussomerin A �9 I O H  OH polyketide antifungal, B-F also [83,84] isomera : A / I ~  antibacterial isolated 

OH 

61. Preussia sp preussin [ antifungal [34] 

62. Rosellinia rosellichalasin . ~ , ( p  cytochalasin phytotoxic Cytochalasin [3,35,36] necatrix ~ E also 
produced 

O 

O O 
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Species Name Structure Chemical class Bioactivity Notes Ref 

63. Sordaria sordariol OH polyketide na [12] 
macrospora ~ ~  

OH 

413 

64. Sporormia O2 ~./'~, polyketide na [451 
aj~nis : H iAP' J 

65. Sporormiella terezine A OH amino acid weak B-D also [80] 
tertispora OH N ~  antifungal, isolated 

' ~ '~  ~OCH~3 ~ / ~ '  N antibacterial 

66. Sporomiella similin A OH O polyketide antifungal B also [85] 
similis ~ O " ~  isolated 

67. Thielavia thielocin A1 beta '-'t ] - .  ~ O  O O polyketide Phospholipase [90] 

te rri co la C ~ ~ ~ , ~ O  O OCH3 A2inh ibitor 

o q_o = ~ 

OCH a 

68. Thielaviaterricola thielavin B ~ . _  OH ,N,f. OCH3,~.. OCH3 polyketide prostaglandinsinhibit~ of [38] 

OH ~ 0 0 2 ~  C O ~  C02H 

69. Westerdykella lmlomycin A ] mixed antifungal [59] 
dispersa 

NH a 

70. Xylaria globoscin ~ polyketide [i] 
globosa 

OCH 3 
O 
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might be different, compounds in entries 34 and 48, share 
the same assortment of functional groups. An anisole 
derivative (entry 15) induces cell differentiation of mouse 
erythroleukemia cells to hemoglobin-producing erythro- 
cyte-like cells at 5/xg ml 1. The polyene aldehyde avel- 
laneol (entry 33) is reported to have antibacterial and anti- 
leukemic activities. It is proposed to be derived from five 
acetate units. An a-pyrone multiforicin A (entry 30) can 
have an immunosuppressive effect since at 0.6/xg m1-1 it 
suppresses the proliferation of mouse spleen lymphocytes 
stimulated by mitogens. Another small molecule, similin A 
(entry 66) is related to dehydropentenomycin and inhibits 
the growth of other coprophilous fungi. 

While depsidones are primarily isolated from lichens as 
shown by entry 4, some were isolated from a fungus on 
food stuff, Chaetomium mollicellum (entry 9). A salicylic 
acid derivative thielavin B (entry 68) inhibits formation of 
prostaglandin E. It is also effective in vivo as an anti- 
inflammatory agent in the rat edema model. Thielocin A1/3 
(entry 67) exhibits a potent inhibitory activity on rat phos- 
pholipase Aa-II with an ICso of 50 nM. Against human 
PLA2-II, the ICso goes up to 12 ~M. 

There are several skyrin-type dimeric polyketides 
(entries 14, 25, 45, and 50). Skyrin was recently reported 
to be an antagonist of glucagon suggesting a potential appli- 
cation in the treatment of diabetes [86]. Cytochlasins [54] 
and epipolythiodioxopiperazines [81] are two groups whose 
numbers and the range of bioactivities are rapidly increas- 
ing. Here the challenge is how to find a compound with 
enough selectivity. This possibility is suggested by a cyto- 
chalasin analog L-696 474 [581. It is reported to inhibit HIV 
protease with an ICso of 3/zM. Although this value indi- 
cates that it is not particularly potent, the effect appears to 
be specific since the structurally related cytochlasin H does 
not have this inhibitory effect, and this compound is inac- 
tive against other proteases including stromelysin, papain, 
and human leucocyte elastase. This non-peptide natural 
product, therefore, can serve as a template to generate 
small-molecule HIV protease inhibitors with increased 
potency. 

Future outlook 

Members of the Sphaeriaceae, the Verrucariaceae, the 
Amphisphaeriaceae, the Diaporthaceae, and the Halo- 
sphaeriaceae in the Pyrenomycetes, and all of the families 
except the Pleosporaceae and the Sporormiaceae in the 
Loculoascomycetes are relatively unexplored with regard to 
production of secondary metabolites. Among them marine 
ascomycetes, lichenized ascomycetes, endophytic ascomy- 
cetes and fungi on twigs and stems and bark are particularly 
difficult to isolate because of their slow growth. Even 
among those genera that have been more frequently 
explored, there are still many additional species that remain 
to be investigated (Table 3). One of the problems why 
many fungi of the groups under review fail to be isolated 
seems to be the drying-up of samples collected which 
affects spore germination (GJ Samuels, personal 
communication). Thus, on-site isolation while collecting 
samples may increase the percentage of the fungi isolated. 
The challenges are to figure out how to access the diverse 

collection of such fungi and to have them grow well enough 
to express their metabolic potential and provide material 
for screening, An understanding of the physiology of these 
fungi including optimization of growth and fermentation 
conditions including temperature, aeration, pH, and nutrient 
concentration will be important in bringing out the poten- 
tial. In addition, novel screens based on genomics and sam- 
ple testing using automation should yield new applications 
of compounds derived from these microorganisms. 
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